Molecular evolution of intergenic DNA in higher primates: pattern of DNA changes, molecular clock, and evolution of repetitive sequences.
نویسندگان
چکیده
A 3.1-kb intergenic DNA fragment located between the psi beta-globin and delta-globin genes in the beta-globin gene cluster was cloned from gorilla, orangutan, rhesus monkey, and spider monkey, and the nucleotide sequence of each fragment was determined. The phylogeny of these four sequences, together with two previously published allelic sequences from humans and one from chimpanzee, was constructed, and the accumulation of mutations in the region was analyzed. The sites of base substitutions are not evenly distributed within the region: two Alu repeats have accumulated 0.21 + 0.02 substitutions/site with 0.15 + 0.008 substitutions/site in the remainder of the fragment. The occurrence of substitutions at neighboring sites is more frequent than would be expected if they were independent. The observed excesses disappear when ancestral -CG- dinucleotide sites are excluded. The phylogenetic relationships of the sequences indicate that the human sequence shares a most recent coancestor with the chimpanzee sequence. The data also show that great apes have accumulated fewer mutations in this part of the genome than has the rhesus monkey. The relative rates of accumulation of 12 kinds of nucleotide substitution in the region during primate evolution are asymmetric in the DNA strands. From these rates of accumulation, the origin of a simple stretch of sequence near the 3' end of the 3.1-kb fragment was deduced to be a sequence comprising 50% T and 50% C on one strand. The two oppositely oriented Alu sequences in the 3.1-kb region were inserted at their present positions before the divergence of the New-World monkeys from other lineages. Our analysis shows that the nucleotide sequences of the two Alu repeats in spider monkey are unexpectedly similar both to each other and to the deduced ancestral sequence of Alu repeats. The data suggest that there has been some type of recombinational event between the spider monkey Alu repeats but that it was not a simple gene conversion.
منابع مشابه
Molecular Evolution of Intergenic DNA in Higher Primates: Pattern of DNA Changes, Molecular Clock, and Evolution of Repetitive Sequences1
متن کامل
Molecular typing of avian Escherichia coli isolates by enterobacterial repetitive intergenic consensus sequences-polymerase chain reaction (ERIC-PCR)
BACKGROUND: Colibacillosis is one of the most economically important diseases of poultry worldwide. OBJECTIVES: This study was conducted to examine the clonal relatedness and typing of 95 avian Escherichia coli isolates by ERIC-PCR. METHODS: Sixty-three E. coli isolates from two common manifestations of colibacillosis (yolk sac infection and colisepticemia) and 32 isolates from feces of apparen...
متن کاملDating divergence of Polystigma and other Sordariomycetes
Studies on the evolutionary history of ascomycetes in terms of time scale will help to understand historical patterns that shape their biodiversity. Until now most of dating studies of ascomycetes have focused on major events in fungal evolution but not on divergence events within smaller groups of fungi e.g. within Sordariomycetes. We used molecular dating to estimate the time of separation of...
متن کاملEnterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) Genotyping of Escherichia coli Strains Isolated from Different Animal Stool Specimens
Background: Escherichia coli is a commensal-pathogenic organism, which includes a wide range of strains. Despite several advanced molecular-genomic technologies for detecting and identifying different strains of E. coli, Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) technique is ...
متن کاملDNA Fingerprinting Based on Repetitive Sequences of Iranian Indigenous Lactobacilli Species by (GTG)5- REP-PCR
Background and Objective: The use of lactobacilli as probiotics requires the application of accurate and reliable methods for the detection and identification of bacteria at the strain level. Repetitive sequence-based polymerase chain reaction (rep-PCR), a DNA fingerprinting technique, has been successfully used as a powerful molecular typing method to determine taxonomic and phylogenetic relat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 5 1 شماره
صفحات -
تاریخ انتشار 1988